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In classical statistics, Pinsker’s theorem provides an exact asymptotic
minimax bound in nonparametric estimation, improving upon optimal rates
of convergence results. We obtain a quantum version of the theorem by estab-
lishing asymptotic minimax results for estimation of the displacement vector
in a quantum Gaussian white noise model, given by a sequence of shifted vac-
uum states. Analogous results are then obtained for estimation of a general
pure state from an ensemble of identically prepared, independent quantum
systems, using the recently established local asymptotic equivalence to the
quantum Gaussian white noise model. Optimality holds with respect to the
most fundamental distance measure for quantum states, that is, trace norm
distance, and in a true quantum sense, allowing for all possible measurements.
Adaptive estimators are also obtained for the above cases. As an application,
we obtain asymptotic minimax adaptive estimators for Wigner functions of
pure states.

1. Introduction. Problems of quantum statistical inference arise in connection with de-
tection and processing of quantum signals. The need for a rigorous theory in this regard has
been confirmed by recent breakthroughs in quantum technology, such as quantum comput-
ing, communication and metrology [41]. Many questions related to quantum measurements
can be formulated in the language of mathematical statistics and can be answered using the
tools familiar to “classical” statisticians.

It is well known that quantum theory yields many counterintuitive predictions, and that
quantum probability modeled after the laws of quantum mechanics violates some of the
classical “Kolmogorovian” laws of probability. It is no surprise that inference in quantum
statistics dictated by the laws of quantum probability (which in turn is based on quantum me-
chanical axioms) deviates from inference as seen in classical statistics. The main differences
are as follows:

1. The probabilistic nature of outcomes is not due to ignorance of the experimenter or
error made during measurement, but because randomness is a fundamental feature of physical
systems at the microscopic level (we elaborate on this in the next section).

2. The task of a classical statistician consists of processing the data obtained by an ex-
perimenter and then performing inference at the population level. In contrast, in quantum
statistics one has to “choose the measurement” (and generate the data) in addition to process-
ing the data generated by it.

3. There are many physical properties that cannot be jointly measured (in fact measure-
ment of one property changes the physical state), and hence in many cases there is no concept
of joint distributions.
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One of the fundamental problems in quantum statistics is state estimation, where given a
collection of identically prepared states indexed by a parameter, one designs a measurement
and then provides an estimate of the parameter based on the outcome of the measurement. In
analogy to the classical decision theoretic approach, one can develop a quantum decision the-
oretic framework for parameter estimation where the “best estimate” also involves optimizing
over the measurements. In this direction, a quantum Cramer–Rao bound has been obtained
in [8, 18, 19] for the covariance matrix of unbiased estimators. In the same spirit, one can
devise optimal testing procedures for discrimination between multiple quantum states. In the
asymptotic setup, a quantum Chernoff bound has been established in [4, 5, 29, 36].

In classical statistics, a fundamental paradigm is approximating complicated experiments
(families of laws, or models) by simpler ones (see [27] for details). In particular, one es-
tablishes asymptotic equivalence between i.i.d. models indexed by a local parameter and a
Gaussian shift model (with the shift given by the same local parameter). This approximation
is called local asymptotic normality (LAN) and allows one to construct an estimator from a
procedure in the Gaussian model with similar risk bounds. Since the approximation is only
local in nature, one constructs a preliminary estimate of the parameter first and then uses
LAN in the neighborhood of the estimated value. Global equivalence has also been shown
between many nonparametric estimation problems like nonparametric regression [9], density
estimation [34] and the Gaussian white noise model. In the quantum setup, quantum LAN
theory for parametric models, established in [15, 16, 23, 42], shows that a model given by
a large collection of identically prepared finite dimensional states can be approximated by a
quantum Gaussian shift model in a local neighborhood. A recent paper [11] extends quan-
tum LAN theory toward a quantum version of local asymptotic equivalence, in particular,
it is shown that an ensemble of pure states in infinite dimensional Hilbert space can be ap-
proximated by coherent states, which are a quantum counterpart of the Gaussian white noise
model.

However, the risk bounds for estimating pure states, obtained in [11] (see Section 5), es-
tablish only optimal rates of convergence and the estimator is not adaptive to the smoothness
parameters. We refer to estimators (classical or quantum) as being sharp minimax if they
attain the optimal rate and the best possible constant in the asymptotic minimax risk. Such
“exact” asymptotically minimax and adaptive estimators can be envisaged in the abovemen-
tioned quantum models, as analogs of their classical counterparts given by Pinsker’s theo-
rem [38, 40]. We use a Bayes estimator, constructed by Holevo in [20], to show that sharp
minimax and adaptive estimation can also be established in the quantum Gaussian sequence
model, and the same holds for i.i.d. pure state models due to local asymptotic equivalence.

1.1. Outline of results. The paper is organized as follows. In Section 2, we review the
basic quantum mechanical concepts of states, measurements, observables and quantum chan-
nels. Section 3 reviews some classical results in nonparametric estimation due to Pinsker [38]
and others and also contains the two main theorems of the paper. Theorem 3.2 states sharp
and adaptive minimax estimation in the Gaussian case and Theorem 3.3 states the same for
i.i.d. pure states. We use a truncated version of the quadratic loss for both the quantum Gaus-
sian sequence and the pure state model (with the truncation going to infinity) since a bounded
loss is needed (or a loss function which grows slower than the asymptotic equivalence rate)
for the transfer of risks.

Section 4 describes the Bayes estimator from [20, 21], which will be useful in our con-
struction of the optimal estimator and also in establishing the minimax lower bound. We also
observe a shrinkage phenomenon for this Bayes estimator—an observation crucial for es-
tablishing the minimax result in the quantum white noise model or the equivalent quantum
Gaussian sequence model.
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For minimaxity, we consider two classes of sequences of displacements of the vacuum,
characterized as a Sobolev ellipsoid and an exponential ellipsoid. In Section 5, we outline the
proof of the nonadaptive part of Theorem 3.2, that is, a sharp minimax result in the quantum
Gaussian sequence model. We prove the upper bound in Theorem 5.1, as mentioned before,
the quantum Bayes estimator described in Section 4 is crucially used here. The minimax
lower bound in the Sobolev case (proved in Theorem 5.3) is established via the Bayes risk
and a concentration property of the prior on the ellipsoid. For the exponential ellipsoid case,
we use a quantum version of the van Trees inequality from [14]. In the quantum context,
for joint estimation of several parameters, the Fisher information appearing in the inequality
would have to be replaced by the Holevo bound; in fact, however, one needs a dual Holevo
bound (proved in [14]) to obtain an upper bound on the trace of Fisher information matrices
from all possible measurements. In both the Sobolev and exponential cases, we observe an
inflation of the minimax risk compared to the classical case, and we argue that this is due to
the noncommutativity aspect of quantum models.

In Section 6, proceeding from the quantum Gaussian sequence model to product mod-
els of pure states, we consider two types of classes: Hermite–Sobolev classes and Hermite-
exponential classes of pure states. These are analogs of the Sobolev ellipsoids and exponen-
tial ellipsoids, respectively, for sequences of displacements. We prove the nonadaptive part of
Theorem 3.3, that is, a sharp minimax result in the i.i.d. pure state model. The upper bound
proved in Theorem 6.2 is obtained by constructing a preliminary estimator (from Theorem 5.1
of [11]), which is in a neighborhood of the true state with high probability. We then use lo-
cal asymptotic equivalence (a stronger version than the one given in [11]) to transfer risks
between the quantum Gaussian sequence model and the i.i.d. pure state model. The lower
bound is proved in Theorem 6.3 with a similar risk transfer.

Adaptive versions of the estimators are described in Section 7. Inspired by techniques from
[40], we replace the Pinsker type estimators of Sections 5 and 6 by weakly geometric block
Stein estimators, which are adaptive to the nuisance parameters while preserving the risk
asymptotics.

An application of these results to Wigner function estimation is discussed in Section 8. In
that context, a method called quantum homodyne tomography is generally applied; [31] and
[32] discuss nonparametric estimation of the purity and nonparametric goodness-of-fit test-
ing of a quantum state, respectively, via this method. Nonparametric estimation of the Wigner
function in the Bayesian framework is treated in [33]; the minimax risk (when the Wigner
function is restricted to a certain smoothness class) is discussed in [1–3, 10, 30]. The minimax
rate under L2-loss obtained by these authors is generally of the order n−1 (up to logarithmic
corrections) in the case of noiseless measurements and slower than any polynomial in noisy
setups. We restrict ourselves to the estimation of Wigner functions for pure states in the ab-
sence of noise; under a certain smoothness restriction (a derived Hermite-exponential class)
we obtain sharp asymptotic risk bounds. These results are not directly comparable to those
cited above, in view of the restriction to pure states; Section 8 discusses this relationship in
more detail, that is, to estimation of Wigner functions of general mixed states under expo-
nential smoothness. We also observe that while previous minimax risk bounds for quantum
homodyne tomography (such as [30]) assume a fixed measurement, and thus rely on methods
of classical nonparametric statistics, our bound is of true quantum type in the sense that it
extends over all possible measurements.

The remaining proofs (of Sections 5, 6 and 7) are deferred to Appendix C in [26].

1.2. Notation. In physics, the vectors of a Hilbert space H (assumed separable) are
written as “ket” |v〉, v∗ as “bra” 〈v| and the inner product of two vectors as the “bra-ket”
〈u|v〉 ∈ C, which is linear with respect to the right entry and antilinear with respect to the left
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entry. Similarly, M := |u〉〈v| is the rank one operator acting as M : |w〉 �→ M|w〉 = 〈v|w〉|u〉.
For an operator A, the expression 〈u|Av〉 will sometimes be denoted as 〈u|A|v〉. The space
of bounded linear operators on H is denoted by L(H). Of particular interest are the following
two subspaces of L(H).

1. T1(H) ⊂ L(H)—the trace class defined by T1(H) = {A : H → H : Tr(A∗A)1/2 < ∞}.
Operators in T1(H) are equipped with the norm Tr(A∗A)1/2.

2. T2(H) ⊂ L(H)—the Hilbert–Schmidt operators defined by T2(H) = {A : H → H :
Tr(A∗A) < ∞}. Operators in T2(H) are equipped with the norm (Tr(A∗A))1/2. The class
T2(H) is also a Hilbert space with respect to the inner product (A,B) := Tr(A∗B).

For any Hilbert space, the usual norm will be denoted by ‖ · ‖ where the particular space
will be understood from the context. We will denote by ‖μ − ν‖TV the total variation norm
between two measures μ and ν. By a ∨ b and a ∧ b, we will denote max(a, b) and min(a, b),
respectively, and a+ will be used to denote a ∨ 0. By a� and �a�, we will denote the largest
integer less than or equal to a and smallest integer greater than or equal to a, respectively. We
will use the notation an � bn whenever c < lim infn(an/bn) ≤ lim supn(an/bn) < C for some
constants c,C > 0. Throughout the paper, c and C will denote arbitrary constants.

2. Quantum mechanics preliminaries.

2.1. States, measurements and observables. A state of a quantum system is described
by a self-adjoint operator ρ on a complex Hilbert space H, which is positive (ρ ≥ 0) and
normalized to Tr(ρ) = 1 (a density operator). A state is called pure if it is of the form ρ =
|ψ〉〈ψ |, otherwise it is called a mixed state. We denote the set of states by S(H). It can be
shown that S(H) ⊂ T1(H).

Data on a quantum system are obtained from observables, which are self-adjoint operators
in the Hilbert space H. If S is a self-adjoint operator in H with spectral decomposition S =∑

j λj�j where �j are projectors, then a measurement generates a discrete random variable
XS taking values in the set of eigenvalues {λ1, λ2, . . .} with probabilities pj = Tr(ρ ·�j). The
expectation of XS under the state ρ is then given by the Born–von Neumann postulate:

(1) EρXS =∑
j

λj Tr[ρ�j ] = Tr[ρS].

In quantum mechanics, one needs generalized versions of the above definitions of observables
and measurements because the spectral decomposition of self-adjoint operators in the form of
a weighted sum of projectors may fail to hold when the Hilbert space is infinite dimensional.
If a measurement has outcomes in a measurable space (�,B), it is determined by a positive
operator valued measure.

DEFINITION 1. A positive operator valued measure (POVM) is a map M : B→ L(H)

having the following properties:

(i) positivity: M(B) ≥ 0 for all events B ∈ B (hence M(B) is self-adjoint)
(ii) σ -additivity: M(

⋃
i Bi) =∑

i M(Bi) for any countable set of mutually disjoint events
Bi (here the convergence is in the weak operator topology of L(H))

(iii) normalization: M(�) = 1.

If the operators M(B) are also orthogonal projections, that is, M(A)2 = M(A) and
M(B)M(A) = 0 when A ∩ B = ∅, then it is called a simple measurement. The collection
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of projectors {�j } in the spectral decomposition S =∑
j λj�j is an example of a simple

measurement. The outcome of the measurement has probability distribution

(2) Pρ(B) = Tr
(
ρM(B)

)
, B ∈ B.

The spectral theorem shows that any self-adjoint operator S :H → H can be diagonalized as
follows:

(3) S =
∫
σ(S)

xM(dx),

where σ(S) is the spectrum of S and M is a POVM, also called spectral measure associated
with the operator S. When S is an observable with a continuous spectrum, it generates a
continuous random variable XS with probabilities given by (2). Also it easily follows that

E[XS] = Tr(Sρ).

The expected value of an observable S is often denoted as 〈S〉, when the state dependence
is not explicitly shown. There are POVMs (called generalized measurements) where the or-
thogonality does not hold, but it can be extended to a POVM in a larger Hilbert space where
the extended version is orthogonal. Let POVM(�,H) be the set of POVMs with values in
L(H) and outcome space � and let H0 be another Hilbert space with a density operator
ρ0. Then any simple measurement M ′ in POVM(�,H ⊗ H0) induces a measurement M in
POVM(�,H), which is determined by

Tr
(
ρM(B)

)= Tr
(
(ρ ⊗ ρ0)M

′(B)
)
, B ∈ B

for all states ρ on H. The pair (H0, ρ0) is called an ancilla and Holevo ([19], Section 2.5)
proved that given any measurement M in H there exist an ancilla (H0, ρ0) and a simple
measurement M ′ such that the above equation holds. The triple (H0, ρ0,M

′) is called a re-
alization of the measurement M and the notion of adding an ancilla before taking simple
measurements is called quantum randomization in [6].

In many cases, it is convenient to perform measurement after “changing” the state of the
original system by interacting with other systems. The maps describing such transformations
are called quantum channels.

DEFINITION 2. A quantum channel between systems with Hilbert spaces H1 and H2 is
a mapping T , which assigns to every state ρ on H1 the state T (ρ) on H2 given by

(4) T (ρ) =
∞∑
i=1

KiρK∗
i ,

where {Ki} are bounded operators Ki : H1 → H2 such that
∑∞

i=1 K∗
i Ki = 1 (the series con-

verging in the strong operator topology of L(H)).

It can be shown that the map T is trace preserving and completely positive, that is, Idm ⊗
T is positive for all m ≥ 1, where Idm is the identity map on the space of m dimensional
matrices. The simplest example of a quantum channel is a unitary transformation ρ �→ UρU∗,
where U is a unitary operator on H. More generally, if |ϕ〉 ∈K is a pure state of an ancillary
system, and V is a unitary on H⊗K, then

ρ �→ T (ρ) := TrK
(
V
(
ρ ⊗ |ϕ〉〈ϕ|)V ∗)

is a quantum channel where TrK is the partial trace over K (with respect to an orthonormal
basis {|fi〉}dimK

i=1 ). If we define operators Ki on H such that 〈ψ |Ki |ψ ′〉 := 〈ψ ⊗fi |V |ψ ′ ⊗ϕ〉,
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then it can be seen that T (ρ) can be written as in the form given in Definition 2. We define a
dual map T ∗ of a quantum channel as follows:

T ∗ : POVM(�,H2) → POVM(�,H1),

T ∗(M)(B) =
∞∑
i=1

K∗
i M(B)Ki,

where the
∑∞

i=1 K∗
i M(B)Ki is a strongly convergent sum. From the definition, it can be

easily verified that T ∗(M) is indeed an element of POVM(�,H1) (i.e., a POVM satisfying
properties i, ii and iii of Definition 1) and that it satisfies the following duality relation:

Tr
(
ρT ∗(M)(B)

)= Tr
(
T (ρ)M(B)

)
, ∀B ∈B

and all states ρ on H1 (cf. 29.9 of [37]).
For estimation purposes, we will need to define distances between two quantum states.

The trace-norm distance between two states ρ0, ρ1 ∈ S(H) is given by

‖ρ0 − ρ1‖1 := Tr
(|ρ0 − ρ1|),

where |τ | := √
τ ∗τ denotes the absolute value of τ . An interpretation of this metric in terms

of quantum testing can be found in [17]. In the special case of pure states, the trace-norm
distance is given by

(5)
∥∥|ψ0〉〈ψ0| − |ψ1〉〈ψ1|

∥∥
1 = 2

√
1 − ∣∣〈ψ0|ψ1〉

∣∣2.
2.2. Gaussian states, Fock space, quantum Gaussian sequence model. To obtain Gaus-

sian random variables, in the space H= L2(R) one considers two special observables Q, P

with continuous spectrum:

(Qf )(x) = xf (x), (Pf )(x) = −i
df

dx
(x), f ∈ D ⊂ L2(R)

(defined on an appropriate domain D) often associated to position (Q) and momentum (P )
of a particle. It can be shown that Zu := u1Q + u2P , u ∈ R

2 are observables (called the
canonical observables). In this context, we define the quantum characteristic function as
W̃ρ(u1, u2) = Tr(ρ exp(iZu)). The inverse Fourier transform of W̃ρ with respect to both vari-
ables is called Wigner function Wρ , or quasidistribution associated to ρ:

Wρ(q,p) = 1

(2π)2

∫ ∫
exp(−iuq − ivp)W̃ρ(u, v) dudv.

A well-known identity relating Wigner functions and the states is the overlap formula

(6) Tr[ρ1ρ2] = 2π

∫ ∫
Wρ1(q,p)Wρ2(q,p)dq dp

a proof of which (along with other properties of Wigner functions) can be found in Chapter 3
of [28]. If the following relation holds:

Eρ exp(iZu) = Tr
(
ρ exp(iZu)

)= exp
(
iu′μ − 1

2
u′�u

)
, u ∈ R

2,

then ρ is called a Gaussian state with mean μ and covariance matrix �. It trivially follows
that the Wigner function of ρ is the bivariate Gaussian density with mean μ and covariance
matrix �. For such quantum Gaussian states in L2(R), we adopt a compact notation, resem-
bling the one for the 2-variate normal law:

(7) ρ =N2(μ,�).
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To define the simplest Gaussian state, let ψ0 = √
ϕ1/2 be the square root of the den-

sity function of the normal N(0,1/2) distribution and consider the operator ρ0 acting by
ρ0f = ψ0〈ψ0, f 〉, f ∈ L2(R). Since ψ0 is a unit vector in L2(R), the operator ρ0 (hence-
forth called the vacuum state) is a projection (written ρ0 = |ψ0〉〈ψ0| in Dirac notation) and it
can be shown that ρ0 = N2(0, 1

2I ) in the notation described above.
An important class is the collection of coherent states N2(μ, I/2); these are pure states

which can be interpreted as a vacuum shifted by μ ∈ R
2 (similar to the Gaussian shift model

in classical statistics). Consider the operators a∗ = (Q − iP )/
√

2 (the creation operator),
a = (Q + iP )/

√
2 (the annihilation operator) and N = a∗a (the number operator). It is well

known that the Hermite basis {|0〉, |1〉 . . .} forms an eigenbasis of the number operator, that
is, N |k〉 = k|k〉. For any z ∈C, define the displacement operator as

D(z) = exp
(
za∗ − z̄a

)
and the coherent state as

(8)
∣∣G(z)

〉= D(z)|0〉 = exp
(−|z|2/2

) ∞∑
k=0

zk

√
k! |k〉.

In the density operator notation, this pure Gaussian state is |G(z)〉〈G(z)|. The expectations
of the canonical observables Q and P under the state |G(z)〉〈G(z)| are

〈Q〉 = √
2 Re z, 〈P 〉 = √

2 Im z

and the characteristic function of |G(z)〉〈G(z)| is

(9) ϕ(t) = exp
(
i(t1

√
2 Re z + t2

√
2 Im z) − 1

4

(
t2
1 + t2

2
))

, t ∈ R
2.

The presence of the factor
√

2 motivates us to adopt a modified notation for the coherent
vector: setting μ = (

√
2 Re z,

√
2 Im z), we will write |G(z)〉 = |ψμ〉 so that now the expec-

tations are (〈Q〉, 〈P 〉) = μ. The characteristic function ϕ(t) is that of N2(μ, I/2), and hence
in the notation of (7)

(10)
∣∣G(z)

〉〈
G(z)

∣∣= |ψμ〉〈ψμ| = N2(μ, I/2).

This setting describes Gaussian states in a single mode; to extend this model to an “infinite
mode” system, one uses Fock spaces. We adopt the definition of Fock space and the general
notion of coherent state from [37].

DEFINITION 3. Let K be a Hilbert space. The Fock space over K is the Hilbert space

(11) F(K) =⊕
n≥0

K⊗sn,

where K⊗sn denotes the n-fold symmetric tensor product, that is, the subspace of K⊗n

consisting of vectors, which are symmetric under permutations of the tensors. The term
K⊗s0 := C|0〉 is called the vacuum space.

DEFINITION 4. Let F(K) be the Fock space over K. For each |v〉 ∈ K, we define an
associated coherent state ∣∣G(v)

〉 := e−‖v‖2/2
⊕
n≥0

1√
n! |v〉⊗n ∈ F(K).
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When v = z ∈ C, we notice the similarity of the RHS of the above equation and that of
(8). It can be shown that if one fixes an orthonormal basis in K, an isomorphism between
the Fock space F(K) and a tensor product of one-mode spaces (one for each basis vector)
can be established. In particular, if K = C, then F(C) ∼= L2(R) and for any orthonormal basis
{|e1〉, |e2〉, . . . } of K, the Fock space F(K) is isomorphic with the tensor product of one mode
spaces Fi := F(C|ei〉) and the coherent states factorize as

F(K) ∼=⊗
i

Fi ,

∣∣G(ψ)
〉∼=⊗

i

∣∣G(ψi)
〉
, ψi = 〈ei |ψ〉.

(12)

Note that in the above expression |G(ψi |ei〉)〉 is written as |G(ψi)〉 since the span of |ei〉 and
C are isomorphic. Now let K = L2(R) and consider ψ =∑∞

i=1 ψi |ei〉 for any orthonormal
basis {|e1〉, |e2〉, . . . } of L2(R). For z = ψi , we set

(13) μi = (
√

2 Reψi,
√

2 Imψi),

and also write |G(z)〉 = |ψμi
〉 = |Ḡ(μi)〉 so that now the expectations are (〈Qi〉, 〈Pi〉) = μi

where Qi and Pi are position and momentum operators, respectively, for the ith mode. To
clarify notation, we now write |G(z)〉 when z is complex and |Ḡ(μ)〉 = |G(z)〉 for μ =
(
√

2 Re z,
√

2 Im z). We now factorize the coherent state as follows:

∣∣G(
√

nψ)
〉〈
G(

√
nψ)

∣∣∼= ∞⊗
i=1

∣∣G(
√

nψi)
〉〈
G(

√
nψi)

∣∣= ∞⊗
i=1

∣∣Ḡ(
√

nμi)
〉〈
Ḡ(

√
nμi)

∣∣
=

∞⊗
i=1

N2(
√

nμi, I/2),

(14)

where we have used the notation from (10) in the last step. The last expression of (14) is
the analog of the classical Gaussian sequence model yj ∼ N(θj , n

−1), j ≥ 1. We will see in
Section 5 that the random variables generated using certain measurements (called covariant
measurements) indeed form a Gaussian sequence model.

Let ψ0,ψ1 ∈ K. The trace-norm distance between the corresponding coherent states is
given by

(15)
∥∥∣∣G(ψ0)

〉〈
G(ψ0)

∣∣− ∣∣G(ψ1)
〉〈
G(ψ1)

∣∣∥∥
1 = 2

√
1 − exp

(−‖ψ0 − ψ1‖2
)
.

If ψ0,ψ1 ∈ C, we write the above equation, in our present notation, as

∥∥∣∣Ḡ(μ0)
〉〈
Ḡ(μ0)

∣∣− ∣∣Ḡ(μ1)
〉〈
Ḡ(μ1)

∣∣∥∥
1 = 2

√
1 − exp

(
−1

2
‖μ0 − μ1‖2

)
.

2.3. Quantum statistical inference. In this section, we formalize the quantum counter-
parts of the basic notions of optimality in classical statistical inference. In classical statistics,
an experiment is defined to be a family of probability measures on a sample space and de-
noted by E = {Pθ , θ ∈ �} where � is the parameter space.

DEFINITION 5. A quantum statistical model over a parameter space � consists of a
family of quantum states Q = {ρθ : θ ∈ �} on a Hilbert space H, indexed by an unknown
parameter θ ∈ �.
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Inference in quantum models generally involves two steps. In the first step, one performs a
measurement on the state ρθ and generates data, while in the second step, one uses standard
statistical tools to solve the specific decision problem using data from the first step. If one
performs a measurement M on the system in state ρθ , a random outcome is obtained with
distribution P

M
θ (E) := Tr(ρθM(E)) (cf. Section 2.1). The measurement data is therefore de-

scribed by the classical model PM := {PM
θ : θ ∈ �} and the estimation problem can be treated

using “classical” statistical methods. However, in many scenarios the optimal estimators for
individual components of a parameter are incompatible with each other and the optimal joint
estimator for the two components can be entirely different from the optimal estimators of the
individual components.

In the classical setup, a randomized decision function is given by a Markov kernel ν. If
L(θ,u) is the loss function, then the risk is given by

(16)
R(θ, ν) =

∫ ∫
L(θ,u)νx(du)μθ(dx) =

∫
L(θ,u)

∫
νx(du)μθ(dx)

=
∫

L(θ,u)ν̃θ (du),

where ν̃θ (A) = ∫
νx(A)μθ(dx).

Section 2.2.4 of [22] discusses the quantum counterpart of this classical formulation. Let
ρθ be the quantum state and μM

θ (B) = Tr(ρθM(B)) be the probability measure generated by
the POVM M . Then the risk is given by

(17) R(θ,M) =
∫

L(θ,u)μM
θ (du).

By using the fact that every affine map ρθ → μθ() can be associated with a POVM, we see
that M is an analog of the classical randomized decision function ν given in (16). We can
easily define the Bayes and minimax problems for quantum estimation.

Minimax problem

inf
M

sup
θ∈�

R(θ,M) = inf
M

sup
θ∈�

∫
L(θ,u)μM

θ (du) = inf
m̂

sup
θ∈�

Eθ

[
L(θ, m̂)

]
.

Bayes problem

inf
M

∫
�

R(θ,M)π(dθ) = inf
M

∫
�

∫
L(θ,u)μM

θ (du)π(dθ) = inf
m̂

∫
Eθ

[
L(θ, m̂)

]
π(dθ).

The notation infm̂ supθ∈� Eθ [L(θ, m̂)] and infm̂
∫

Eθ [L(θ, m̂)]π(dθ) will be called con-
densed notation henceforth and will be used in Section 8 and in the proofs in [26]. Note that
the infimum is over all POVM and the notation m̂ should not be confused with a deterministic
estimator seen in the classical setup. We will also denote the Bayes risk as infm̂ E[L(θ, m̂)]
where the expectation is also taken over the parameter θ .

In classical statistics, a well-known paradigm is using asymptotic equivalence of exper-
iments to transfer risk bounds from one experiment to another. Suppose we have two ex-
periments E = {Pθ , θ ∈ �} on a sample space (�1,A1) and F = {Qθ, θ ∈ �} on a a sample
space (�2,A2). Also let the loss function satisfy the condition 0 ≤ L(θ,u) ≤ 1. If there exists
a Markov kernel K such that

sup
θ∈�

‖KPθ − Qθ‖TV ≤ ε,

then for any randomized decision function μ of θ in the model Qθ , the randomized decision
function ν = μ ◦ K (composition of two Markov kernels) satisfies

R1(θ, ν) ≤ R2(θ,μ) + ε,



PINSKER CONSTANT FOR PURE QUANTUM STATES 439

where R1(θ, ν) and R2(θ,μ) are the risks in the models E and F , respectively. We discuss
the generalization of this paradigm to the quantum setup and also generalize it to the case of
unbounded loss.

The quantum equivalent of a Markov kernel is the transformation by quantum channels.
The quantum model Q can be transformed into another quantum model Q′ := {ρ′

θ : θ ∈ �}
on a Hilbert space H′ by applying a quantum channel

T : T1(H) → T1
(
H′),

T : ρθ �→ ρ′
θ .

In this context, we define the quantum Le Cam distance between two models from [11].

DEFINITION 6. Let Q and Q′ be two quantum models over �. The deficiency between
Q and Q′ is defined by

δ
(
Q,Q′) := inf

T
sup
θ∈�

∥∥T (ρθ ) − ρ′
θ

∥∥
1,

where the infimum is taken over all channels T . The Le Cam distance between Q and Q′ is
defined as

(18) �
(
Q,Q′) := max

(
δ
(
Q,Q′), δ(Q′,Q

))
.

Its interpretation is that models which are “close” in the Le Cam distance have similar
risk bounds. Now, suppose we have two sequences of quantum models (or experiments)
E(n) = {ρ(1,n)

θ : θ ∈ �} and F (n) = {ρ(2,n)
θ : θ ∈ �}. Assume that �(E(n),F (n)) → 0 with

the associated sequence of Hilbert spaces H1,n and H2,n. This implies δ(E(n),F (n)) → 0
and in particular there exists a sequence of quantum channels Tn, such that∥∥Tn

(
ρ

(1,n)
θ

)− ρ
(2,n)
θ

∥∥
1 = o(1).

Let the loss function also change with n and satisfy the relation 0 ≤ Ln(θ,u) ≤ cn. Also
assume that the sequence of quantum channels Tn is such that

(19) cn sup
θ∈�

∥∥Tn

(
ρ

(1,n)
θ

)− ρ
(2,n)
θ

∥∥
1 = o(1).

Recall the dual map T ∗ of a quantum channel T . It follows that for any M ∈ POVM(�,H2,n),

R1
n

(
θ, T ∗

n (M)
)=∫ Ln(θ,u)Tr

(
ρ

(1,n)
θ T ∗

n

(
M(du)

))
=
∫

Ln(θ,u)Tr
(
ρ

(2,n)
θ M(du)

)
(20)

+
∫

Ln(θ,u)
[
Tr
(
ρ

(1,n)
θ T ∗

n

(
M(du)

))− Tr
(
ρ

(2,n)
θ M(du)

)]
=R2

n(θ,M) +
∫

Ln(θ,u)
[
Tr
(
Tn

(
ρ

(1,n)
θ

)(
M(du)

))− Tr
(
ρ

(2,n)
θ M(du)

)]
≤R2

n(θ,M) + cn

∥∥Tn

(
ρ

(1,n)
θ

)− ρ
(2,n)
θ

∥∥
1

≤R2
n(θ,M) + o(1)(21)

the term o(1) going to 0 uniformly over all θ . Thus we can compare the risks of the two
models E(n) and F (n) if (19) holds. Note that we have similar relations for minimax risks and
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Bayes risks, by taking a supremum over � or integrating with respect to a prior, respectively,
and then taking an infimum over all estimators:

inf
M

sup
θ∈�

R1
n(θ,M) ≤ inf

M
sup
θ∈�

R2
n(θ,M) + o(1).(22)

inf
M

∫
�

R1
n(θ,M)π(dθ) ≤ inf

M

∫
�

R2
n(θ,M)π(dθ) + o(1).(23)

3. Main theorems. Consider the classical Gaussian white noise model

(24) dY (t) = f (t) dt + 1√
n

dW(t), t ∈ [0,1],

where W(t) is the standard Brownian motion and the equivalent Gaussian sequence model

(25) yj = θj + 1√
n
ξj , j = 1,2, . . . .

Here, the ξj ’s are i.i.d. N(0,1). The second model can be obtained from the first by the
following transformations:

yj =
∫ 1

0
φj (t) dY (t), θj =

∫ 1

0
φj (t)f (t) dt, ξj =

∫ 1

0
φj (t) dW(t),

where φj (t) is the trigonometric basis of L2[0,1] given by

φ1(t) = 1, φ2k(t) = √
2 cos(2πkt), φ2k+1(t) = √

2 sin(2πkt), k = 1,2, . . . .

Consider the Sobolev ellipsoid

�(β,Q) =
{
θ = {θj } ∈ �2(N) :

∞∑
j=1

αjθ
2
j ≤ Q

}
,

where αj = j2β or (j − 1)2β for even and odd j , respectively.
Also consider the class of functions,

W(β,Q) =
{
f ∈ L2[0,1] : θ = {θj } ∈ �(β,Q), where θj =

∫ 1

0
φj (t)f (t) dt

}
.

Pinsker’s theorem ([38], cf. also [7, 35, 40]) gives sharp estimates of the asymptotic minimax
risk in the above models, where one can be derived from the other using Parseval’s identity.

THEOREM 3.1 (Pinsker’s theorem). For β > 0, Q > 0, we have

lim
n→∞ inf

f̂n

sup
f ∈W(β,Q)

n2β/(2β+1)Ef ‖f − f̂n‖2 = C∗,

lim
n→∞ inf

θ̂n

sup
θ∈�(β,Q)

n2β/(2β+1)Eθ‖θ − θ̂n‖2 = C∗,

where

C∗ = Q1/(2β+1)c(β), c(β) =
(

β

β + 1

)2β/(2β+1)

(2β + 1)1/(2β+1)

and inf
f̂n

, inf
θ̂n

extend over all estimators of f , θ in the classical models (24) and (25),
respectively.
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Now consider the following norm in �2(R2) (square summable sequences in R
2): for m =

(μ1,μ2, . . .),

‖m‖2 =
∞∑

j=1

‖μj‖2

and consider the quantum Gaussian sequence model given in (14). In particular, consider the
following form of the tensor product of coherent states:

(26) ρm =
∞⊗

j=1

∣∣Ḡ(n1/2μj

)〉〈
Ḡ
(
n1/2μj

)∣∣, ‖m‖2 < ∞.

In the Sobolev case, we will assume that the sequence m = (μ1,μ2, . . .) is in an ellipsoid (for
β > 0, R > 0) described by the following equation:

(27) �(β,R) :=
{
m :

∞∑
j=1

j2β‖μj‖2 ≤ R

}

and in the exponential case we will assume that m = (μ1,μ2, . . .) is in an ellipsoid (for β > 0,
r ∈ (0,1], R > 0) described by the following equation:

(28) E(β, r,R) :=
{
m :

∞∑
j=1

exp
(
2βjr)‖μj‖2 ≤ R

}
.

In [11], the authors prove an optimal rate of convergence result for estimation of m under
the Sobolev ellipsoid in terms of the norm ‖m‖2. Using a Bayesian framework of estimation
of a single component μj (discussed in the next section), we can sharpen that result to obtain
the following analog of Pinsker’s theorem in the quantum setup. We also extend our theorem
to the exponential ellipsoid case, the classical analog of which can be found in [7].

THEOREM 3.2. Case A: Sobolev ellipsoid
Consider the model given in (26) with m = (μ1,μ2 . . .). Let �(β,R) as given in (27) and

wn(x) = x ∧ log logn. Then the following result holds:

(29) lim
n→∞ inf

M
sup

m∈�(β,R)

∫
wn

(
ηn(β,R)‖m − u‖2)Tr

(
ρmM(du)

)= 1,

where

ηn(β,R) = (n/2)2β/(2β+1)R−1/(2β+1)c−1(β)

and c(β) is the constant defined in Theorem 3.1. An estimator attaining this bound asymptot-
ically can be chosen independent of β and R as long as β,R > 0.

Case B: Exponential ellipsoid
Let E(β, r,R) as given in (28) and vn(x) = x ∧ (n1/2/ log logn). Then the following result

holds:

(30) lim
n→∞ inf

M
sup

m∈E(β,r,R)

∫
vn

(
τn(β, r)‖m − u‖2)Tr

(
ρmM(du)

)= 1,

where

τn(β, r) = n

2

(
logn

2β

)−1/r

.

For every 0 < r0 < 1, there exists an estimator, not depending on β , R and r , attaining this
bound asymptotically, whenever β,R > 0 and r0 < r ≤ 1.



442 S. LAHIRY AND M. NUSSBAUM

In both the cases, the POVMs are maps described in general as follows: M : B(�2(R2)) →
L(F(L2(R))) where B(�2(R2)) is the Borel sigma algebra of �2(R2) and L(F(L2(R))) is
the space of bounded operators on the Fock space F(L2(R)).

Note: In the exponential case, the minimax constant does not depend on R.

We note that the risk functions here are derived from normalized truncated quadratic
�2(R2)-loss, with truncation effected by functions wn(x) or vn(x), and where the normal-
izer sequences ηn(β, r) or τn(β, r) encode the sharp risk asymptotics. This variant of Pinsker
type bounds has first been stated in [39], using fixed, possibly bounded functions w(x); it is
particularly suited for transfer by asymptotic equivalence.

Indeed, the quantum asymptotic equivalence result of [11] now ensures that a similar sharp
risk bound can be established in the product model of pure states |ψ〉〈ψ |⊗n with squared trace
norm loss. It can be shown that the rate of approximation of the models in the asymptotic
equivalence sense can be chosen to be faster than the truncation rates, that is, the condition
(19) is satisfied with cn = log logn or n1/2/ log logn for the Sobolev and the exponential
cases, respectively. So we can transfer the risk bound of the quantum Gaussian sequence
model to a risk bound in the quantum pure product state model.

Let H = L2(R) and let |e0〉, |e1〉, . . . be the standard ONB (Hermite functions). Introduce
the following Hermite–Sobolev class and Hermite-exponential class of pure states character-
ized by ellipsoid conditions:

Sβ(L) :=
{
|ψ〉〈ψ | : ‖ψ‖ = 1 and

∞∑
j=0

∣∣〈ψ |ej 〉
∣∣2j2β ≤ L

}
, β > 0,L > 0,(31)

Eβ,r(L) :=
{
|ψ〉〈ψ | : ‖ψ‖ = 1 and

∞∑
j=0

∣∣〈ψ |ej 〉
∣∣2 exp

(
2βjr)≤ L

}
,

(32)
β > 0,L > 1, r ∈ (0,1].

THEOREM 3.3. Assume measurements on states |ψ〉〈ψ |⊗n. Then we have the following
results.

Case A: Hermite–Sobolev class
Let Sβ(L) be the Hermite–Sobolev class defined above and |ψ〉〈ψ | ∈ Sβ(L). Then the

following result holds:

(33) lim
n→∞ inf

M
sup

|ψ〉〈ψ |∈Sβ(L)

∫
wn

(
η̃n(β,L)

2

∥∥ρ − |ψ〉〈ψ |∥∥2
1

)
Tr
(|ψ〉〈ψ |⊗nM(dρ)

)= 1,

where

η̃n(β,L) = 1

2
n2β/(2β+1)L−1/(2β+1)c−1(β).

For every β0 > 1/2, there exists an estimator, not depending on β and L, attaining this bound
asymptotically, whenever β > β0 and L > 0.

Case B: Hermite-exponential class
Let Eβ,r(L) be the Hermite-exponential class defined above and |ψ〉〈ψ | ∈ Eβ,r(L). Then

the following holds:

(34) lim
n→∞ inf

M
sup

|ψ〉〈ψ |∈Eβ,r (L)

∫
vn

(
τn(β, r)

2

∥∥ρ − |ψ〉〈ψ |∥∥2
1

)
Tr
(|ψ〉〈ψ |⊗nM(dρ)

)= 1.

For every 0 < r0 < 1 and β0 > 0, there exists an estimator, not depending on β , R and r ,
attaining this bound asymptotically, whenever β > β0, L > 1 and r0 < r ≤ 1.
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In both the cases, the POVMs are maps described in general as follows: M : B → L(H⊗n)

where B is the Borel sigma algebra of T1(L
2(R)) restricted to density operators of rank 1

and H = L2(R).
Note: In the exponential case, the minimax constant does not depend on L.

REMARK. Henceforth, “Case A” will be used to denote the Sobolev ellipsoid and the
Hermite– Sobolev class for the Gaussian sequence model and the i.i.d. model, respec-
tively. Similarly, “Case B” will be used to denote the exponential ellipsoid and the Hermite-
exponential class for the Gaussian sequence model and the i.i.d. model, respectively. While
discussing the POVMs in the following sections, the spaces on which they act will be those
described in Theorems 3.2 and 3.3.

4. Measurement of the shift parameter. In this section, we consider measurement of
the shift parameter μ of the model ρ = N2(μ, I/2). In the first part, we describe the partic-
ular generalized measurement (the covariant measurement) that is used to measure the shift
parameter and mention its optimality as a pointwise estimator. A Bayes estimator constructed
by appropriately “shrinking” the covariant measurement is discussed in the following subsec-
tion. Since the details of this measurement scheme are thoroughly discussed in Chapters 3, 4
and 5 of [19], we refer the reader to the relevant sections for proofs and details. Appendix A in
[26] also contains some discussion of the observables generating the covariant measurement.

4.1. Covariant measurement. An essential fact is that the coherent vectors {|ψm〉,m ∈
R

2} form an “overcomplete system” (if multiplied by a factor 1/
√

2π ), that is, fulfill

(35)
1

2π

∫
R2

|ψm〉〈ψm|dm = I,

where I is the identity operator in the Hilbert space H = L2(R) (see equation (3.5.45), p. 101
of [19], with proof after Proposition 3.5.1). A complete orthonormal system {|ψm〉} is an ex-
ample of an overcomplete system (with integration replaced by summation); however, in the
general case the vectors ψm can be nonorthogonal and linearly dependent. The system of
coherent vectors {|ψm〉,m ∈ R

2} generates a resolution of the identity, that is, a normalized
POVM M on the measurable space (R2,B) (with B being the Borel sigma-algebra) accord-
ing to

(36) M(B) = 1

2π

∫
B

|ψm〉〈ψm|dm, B ∈B.

The POVM M then generates a (generalized) observable XM with values in R
2, which under

the state ρ has probability distribution

(37) P(XM ∈ B) = TrρM(B), B ∈B.

This is called the canonical covariant measurement in Section 3.6 of [19], covariance refer-
ring to the action of the Weyl unitaries (or the displacement operator). There also optimality
properties are proved, as well as equivalence to simple measurements on an extended system
(corresponding to an orthogonal resolution of the identity there). When the covariant mea-
surement is clear from the context we will write often write XM as X; in Appendix A in [26]
we show that X ∼ N2(μ, I2) if ρ = |ψμ〉〈ψμ|.

An equivalent description can be given as follows; cf. Proposition 3.6.1 of [19] and also
relation (3.18) in [21]. Let H = L2(R) and let H0 be an identical Hilbert space with canonical
observables Q0 and P0. In the tensor product, H⊗H0 consider the operators

(38) Q̃ = Q ⊗ I0 + I ⊗ Q0, P̃ = P ⊗ I0 − I ⊗ P0,
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where I0 is the identity operator in H0. Let ρ be the state in H to be measured and ρ0 be
an auxiliary state in H0 to be chosen; then a simple measurement of ρ ⊗ ρ0 can be under-
stood as a “randomized” measurement of ρ. These randomized measurements correspond to
nonorthogonal resolutions like (35).

It can be shown that Q̃ and P̃ commute (see Appendix A in [26]) which means that the
observables Q̃, P̃ are jointly measurable in the system given by H⊗H0. The operators Q̃, P̃
are self-adjoint, and thus generate jointly distributed real valued random variables X

Q̃
, X

P̃
.

We define X̃ as follows:

(39) X̃ = (X
Q̃

,X
P̃
)

and it can be checked that if ρ = |ψμ〉〈ψμ| and the auxiliary state ρ0 is the vacuum
ρ0 = |ψ0〉〈ψ0| then the distribution of X̃ coincides with the distribution of X (obtained
with the covariant measurement), that is, with N2(μ, I2) (see Appendix A in [26]). Suppose
μ1 = TrQ|ψμ〉〈ψμ| is to be estimated, then Q turns out to be the uniformly best unbiased
measurement of μ1 and the random variable YQ corresponding to the canonical observable Q

has distribution N(μ1,1/2). Similar results hold for the parameter μ2 and the observable P .
We have

Eμ(YQ − μ1)
2 = Varμ(YQ) = 1

2
= Eμ(YP − μ2)

2

so that

(40) Eμ

∥∥(YQ,YP ) − μ
∥∥2 = 1.

But YQ, YP are not jointly observable, so the bound 1 for the MSE of estimating μ cannot
actually be attained. Indeed Sections 6.5 and 6.6 of [19] discuss two different Cramer–Rao
type bounds for the MSE, one of which is attainable for one-dimensional parameters only
(the bound achievable for higher dimensional parameters is known as the Holevo bound in the
literature [14, 42]). Since the unbiased estimator X of μ (based on the canonical measurement
(36)) has distribution N2(μ, I2) under |ψμ〉〈ψμ|, we have

Eμ‖X − μ‖2 = 2.

It is noted in [19] that the higher bound 2 compared to 1 in (40) is an expression of the fact
that YQ, YP are not jointly observable. Also a scheme is presented where in a continuum of
quantum models, depending on a parameter � expressing the “degree of noncommutativity,”
the higher bound tends to the lower one as � → 0.

4.2. Bayes estimation. Consider the problem of Bayes estimation with quadratic loss of
the parameter μ ∈ R

2 under a normal prior μ ∼ N2(0, σ 2
0 I2). The solution for a quadratic

risk and given in [22], p. 55, with details and proofs in [21]. Consider the loss function

L(μ̂,μ) = g1(μ̂1 − μ1)
2 + g2(μ̂2 − μ2)

2.

The form of the solution (the Bayes estimator) crucially depends on the ratio g1/g2. Define
s2 = σ 2

0 + 1/2; we have to distinguish three cases: g1/g2 ≥ (2s2)2, g1/g2 ≤ (2s2)−2 and
(2s2)−2 < g1/g2 < (2s2)2 and discuss them separately. The solutions overlap at the bound-
aries.

Case A1. If g1/g2 ≥ (2s2)2, then

(41) μ̂1 =
(

σ 2
0

σ 2
0 + 1/2

)
YQ, μ̂2 = 0
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Case A2. If g1/g2 ≤ (2s2)−2, then

(42) μ̂1 = 0, μ̂2 =
(

σ 2
0

σ 2
0 + 1/2

)
YP ,

where YQ is the r.v. generated by Q and YP is the r.v. generated by P . For a point on the
presentation in [22], see the technical remark in Appendix A in [26].

These estimators are called “deterministic” in [22] since they are based on an simple ob-
servable (not a generalized one), that is, they do not involve additional “randomization” by
an auxiliary system (equivalently, do not involve a nonorthogonal resolution like (35)). We
compute the risk for case A1 noting that the calculations for the case A2 is analogous. Recall
YQ, YP defined in the last page; the risk of this estimator of μ̂1 for fixed (nonrandom) μ is

Eμg1(μ̂1 − μ1)
2 + g2μ

2
2

= g1

(
1 − σ 2

0

σ 2
0 + 1/2

)2
μ2

1 + g1

(
σ 2

0

σ 2
0 + 1/2

)2 1

2
+ g2μ

2
2

and if π denotes the prior distribution π = N2(0, σ 2
0 I2) for μ then the overall (Bayes) risk is

the expectation of the above under π , that is,

R(μ̂,π) = g1

(
1/2

σ 2
0 + 1/2

)2
σ 2

0 + g1

(
σ 2

0

σ 2
0 + 1/2

)2 1

2
+ g2σ

2
0

= g1
σ 2

0 (1/2)

σ 2
0 + 1/2

+ g2σ
2
0 .

(43)

We note that if g2 = 0 and g1 = 1, that is, we are only trying to estimate μ1 with quadratic
loss, then the Bayes risk and the estimator coincide with those in the classical model where
we only observe a random variable YQ ∼ N(μ1,1/2).

Case B. If (2s2)−2 < g1/g2 < (2s2)2, then the Bayes estimator is given by a nonorthogonal
resolution obtained from (35) by a linear change of variables. Note that 2s2 = 2σ 2

0 + 1 > 1,
so if g1/g2 = 1 then this case necessarily obtains. Henceforth, we will focus on the case
g1 = g2 = 1 and we state the “randomized” observables and the corresponding POVM where
the optimal risk is obtained. Although the general case ((2s2)−2 < g1/g2 < (2s2)2) is worked
out in [21], Chapter III, Sections 5 and 6; the special case (g1 = g2 = 1) is explained in
[20]. In addition to the observables, [20] describes the equivalent POVM which is optimal in
the Bayes sense. The problem is discussed in Section 3 of [20]; by Proposition 3 there, the
optimal POVM is given by (denoting m = (x, y))

Mc(B) = 1

2πc2

∫
B

|ψm/c〉〈ψm/c|dm, B ∈ B.

From (35) and a change of variables, it can be easily verified that

1

2πc2

∫
R2

|ψm/c〉〈ψm/c|dm = I,

and hence Mc is a resolution of identity (the other properties of POVM are also trivial to

check). Here, c = 2σ 2
0 /(2σ 2

0 + 2σ 2 + 1) and in the special case σ 2 = 1/2, we have c = σ 2
0

σ 2
0 +1

.

The minimal Bayes risk according to (17) in [20] thus becomes

(44) inf
M

R(M,π) = 2σ 2
0

σ 2
0 + 1

.
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The randomized measurements are then given by

(45) Q̃c = c(Q ⊗ I0 + I ⊗ Q0), P̃c = c(P ⊗ I0 − I ⊗ P0).

The above expressions are given by equation (12) of [20] and the fact that these randomized
measurements and Mc generate the same random variables follows by an argument analogous
to the one given using characteristic functions in Appendix A in [26].

From (45), it is clear that X̃c = (X
Q̃c

,X
P̃c

) satisfies X̃c = cX̃ where X̃ is given in (39). As

c = σ 2
0

σ 2
0 +1

< 1, we note that Bayes estimation in the quantum case exhibits the same shrinkage

phenomenon as witnessed in the classical counterpart.

5. Minimax nonparametric estimation of a signal in quantum Gaussian white noise.
In this section, we consider the estimation of parameters of the quantum Gaussian sequence
model given in (26) under the ellipsoid restrictions (27) and (28). We will also consider the
following variant of the previous model:

(46)
∞⊗

j=0

∣∣Ḡ(n1/2μj

)〉〈
Ḡ
(
n1/2μj

)∣∣.
This model, with the index starting from 0 instead of 1 and modified ellipsoids described
below, arises from an approximate model, different from the one given in [11] (for a mo-
tivation see Lemma B.5 in [26]). In the Sobolev case, we will assume that the sequence
m = (μ0,μ1,μ2, . . .) is in an ellipsoid described as follows:

(47) �1(β,R) :=
{
m :

∞∑
j=0

j2β‖μj‖2 ≤ R

}

(the above ellipsoid is related to the Hermite–Sobolev class) and in the exponential case
we will assume that m = (μ0,μ1,μ2, . . .) is in an ellipsoid (associated to the Hermite-
exponential class) described by the following equation:

(48) E1(β, r,R) :=
{
m :

∞∑
j=0

exp
(
2βjr)‖μj‖2 ≤ R

}
.

In this case, we consider the following norm:

‖m‖2 =
∞∑

j=0

‖μj‖2.

5.1. Upper asymptotic risk bound. In this subsection, we consider the upper bound of
minimax risk in estimating the parameter m over the ellipsoids �(β,R), �1(β,R), E(β, r,R)

and E1(β, r,R). For each component state |Ḡ(n1/2μj)〉〈Ḡ(n1/2μj)|, take a generalized ob-
servable X̃j constructed as X̃ in (39), and set Yj = n−1/2X̃j . This gives a sequence of inde-
pendent random vectors

(49) Yj ∼ N2
(
μj ,n

−1I2
)
, j = 0,1,2, . . . ,

which is a classical Gaussian sequence model, written with R
2-valued Gaussian sequence

elements Yj . Then there is an estimator m̂n such that we have the following theorem.

THEOREM 5.1. (i) Case A
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Let

�(β,R) =
{
m = (μj )

∞
j=1 :

∞∑
j=1

‖μj‖2j2β ≤ R

}

and let wn(x) = x ∧ log logn. The following result holds:

(50) lim sup
n→∞

sup
m∈�(β,R)

Em

[
wn

(
ηn(β,R)‖m − m̂n‖2)]≤ 1,

where

ηn(β,R) = (n/2)2β/(2β+1)R−1/(2β+1)c−1(β),

c(β) =
(

β

β + 1

)2β/(2β+1)

(2β + 1)1/(2β+1).

Case B
Let

E(β, r,R) =
{
m = (μj )

∞
j=1 :

∞∑
j=1

‖μj‖2 exp
(
2βjr)≤ R

}

and vn(x) = x ∧ (n1/2/ log logn). The following result holds:

(51) lim sup
n→∞

sup
m∈E(β,r,R)

Em

[
vn

(
τn(β, r)‖m − m̂n‖2)]≤ 1,

where

τn(β, r) = n

2

(
logn

2β

)−1/r

.

The optimal estimator in the general form in terms of coefficients αj is given below (the
estimators in the Sobolev case and the exponential case can be found by letting αj be j2β or
exp(2βjr), resp.). The optimal estimator m̂n is linear in Yj :

(52) m̂n,j = μ̂j = lj Yj , lj = (
1 − κ(αj )

1/2)
+,

where κ > 0 is found from the equation,

(n/2)−1

κ

∞∑
j=1

α
1/2
j

(
1 − κ(αj )

1/2)
+ = R.(53)

(ii) Relation (50) holds with �(β,R) replaced by �1(β,R) with l0 = 1 and lj the same as
in (52) for j ≥ 1. Similarly, relation (51) holds with E(β, r,R) replaced by E1(β, r,R) with
l0 = 1 and lj the same as in (52) for j ≥ 1.

Note that we have used the first of the following equivalent expressions:

Em

[
wn

(
ηn(β,R)‖m − m̂n‖2)]= ∫

wn

(
ηn(β,R)‖m − u‖2)Tr

(
ρmM(du)

)
.

Here, m̂n was constructed from Yj = n−1/2X̃j and if Mj was the POVM which generates
X̃j by acting on the component |Ḡ(n1/2μj)〉〈Ḡ(n1/2μj)|, then we can easily associate M

with
⊗∞

j=1 Mj (adjusting for the change in scale due to the multipliers lj ). Similarly, we use
the equivalent notation with the expectation for the exponential case and (ii). Henceforth for
the upper bounds, we will always use the Em(·) notation keeping in mind that the associated
POVM is implied. Also we will use ηn instead of ηn(β,R) and τn instead of τn(β,R) for the
rest of the paper. First, we state the main lemma (proved in Appendix C in [26]), which will
help proving Theorem 5.1.
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LEMMA 5.2. (i) Case A
Let c(β) and m̂n (for the Sobolev case) be as given in Theorem 5.1. As n → ∞, we have

(54) (n/2)2β/(2β+1) sup
m∈�(β,R)

Em‖m̂n − m‖2 ≤ R1/(2β+1)c(β)
(
1 + o(1)

)
.

Case B
Let m̂n (for the exponential case) be as given in Theorem 5.1. As n → ∞, we have

(55)
(

n

2
(logn)−1/r

)
sup

m∈E(β,r,R)

Em‖m̂n − m‖2 ≤ (2β)−1/r(1 + o(1)
)
as n → ∞ .

(ii) Equation (54) holds with �(β,R) replaced by �1(β,R) with l0 = 1 and lj the same as
in (52) for j ≥ 1. Similarly, equation (55) holds with E(β, r,R) replaced by E1(β, r,R) with
l0 = 1 and lj the same as in (52) for j ≥ 1.

PROOF OF THEOREM 5.1. To prove part (i), we note that due to Lemma 5.2,

lim sup
n→∞

sup
m∈�(β,R)

Em

[
ηn‖m − m̂n‖2]≤ 1.

Since the truncated loss is bounded above by the untruncated one, that is,

wn

(
ηn‖m − m̂n‖2)= ηn‖m − m̂n‖2 ∧ log logn ≤ ηn‖m − m̂n‖2,

the result follows.
Similarly, observing that the truncated loss is less than the quadratic loss and the exponen-

tial case of Lemma 5.2 (i.e., equation (55)) holds, one infers the result for the exponential
case (i.e., equation (51)) for Theorem 5.1. Part (ii) of the theorem can be proved similarly
using part (ii) of the above lemma. �

5.2. Lower asymptotic risk bound. The minimax lower bound can be obtained from the
Bayes risk computed for a suitable prior.

THEOREM 5.3. Case A
With the sequence ηn(β,R), the constant c(β) and the function wn(x) as defined in Theo-

rem 5.1, the following result holds:

(56) lim inf
n→∞ inf

M
sup

m∈�(β,R)

∫
wn

(
ηn(β,R)‖m − u‖2)Tr

(
ρmM(du)

)≥ 1,

where the infimum is taken over all POVMs.
Case B
With the sequence τn(β,R) and the function vn(x) as defined in Theorem 5.1, the following

result holds:

(57) lim inf
n→∞ inf

M
sup

m∈E(β,r,R)

∫
vn

(
τn(β, r)‖m − u‖2)Tr

(
ρmM(du)

)≥ 1,

where the infimum is taken over all POVMs.

For the Sobolev case, let us set up a prior distribution π on μj in the quantum model (26)
as independent random 2-vectors,

(58) μj ∼ N2

(
0,

1

2
θ̃2
j I2

)
, j = 1,2, . . . ,
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where θ̃j
2 = (n/2)−1(cn ∧(κεα

1/2
j )−1 −1)+, cn = log log logn and also assuming that θ̃2

j = 0
means μj is simply set 0. Here, κε is the solution of the equation

(n/2)−1

κε

∞∑
j=1

α
1/2
j

(
1 − κεα

1/2
j

)
+ = R(1 − ε).

Define the a ball as follows:

Bn =
{
m :

∞∑
j=1

‖μj‖2 ≤ δn(1 + ε0)

}
,

where δn = E(
∑∞

j=1 ‖μj‖2) (this term can be shown to be O(n−2β/(2β+1) log log logn)). The
following lemma implies that the above prior concentrates over the ball Bn and the ellipsoid
�(β,R).

LEMMA 5.4. Consider the prior given in (58). Then the following concentration proper-
ties hold:

P
(
m /∈ �(β,R)

)→ 0,(59)

P(m /∈ Bn) → 0.(60)

Some standard reasoning (see Appendix C in [26]) in connection with Pinsker’s lower risk
bound and using the previous lemma yields

LEMMA 5.5.

inf
M

sup
m∈�(β,R)

∫
wn

(
ηn(β,R)‖m − u‖2)Tr

(
ρmM(du)

)
≥ inf

M

∫ ∫
ηn(β,R)‖m − u‖2 Tr

(
ρmM(du)

)
π(dm) + o(1),

where the infimum is taken over all POVMs.

We note that by Lemma 5.5, it is enough to show that

(61) lim
ε↓0

lim inf
n

inf
M

∫ ∫
ηn(β,R)‖m − u‖2 Tr

(
ρmM(du)

)
π(dm) ≥ 1

to prove Theorem 5.3 for the Sobolev case.
The above lemmas are proved in Appendix C and the main theorem is proved in Ap-

pendix B in [26]. For the lower bound in the exponential case, we can set up a Gaussian prior
similarly, but the asymptotic concentration properties like those in Lemma 5.4 do not hold.
Instead we compute the Bayes risk by a different approach, similar to [7], to give a one-shot
lower bound using the van Trees inequality. However, since we are in the quantum setup we
need a suitable generalization of the inequality. Since the arguments involving the quantum
van Trees inequality are rather technical, we defer the details to the main proof in Appendix B
in [26].

6. Minimax nonparametric estimation of pure quantum states. Consider the frame-
work of [11]. Let H be an infinite dimensional Hilbert space and let B := {|e0〉, |e1〉, . . . } be
a fixed orthonormal basis in H. The Fourier decomposition of an arbitrary vector is written as
|ψ〉 =∑∞

j=0 ψj |ej 〉. Since most of the models will consist of pure states, we will sometimes
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define them in terms of the Hilbert space vectors rather than the density matrices, but keep in
mind that the vectors are uniquely defined only up to a complex phase.

Let us consider the general problem of estimating an unknown pure quantum state in H.
Motivated by physical principles and statistical methodology, we introduce the following
Hermite–Sobolev classes of pure states characterized by an appropriate decay of the coeffi-
cients with respect to the basis B:

(62) Sβ(L) :=
{
|ψ〉〈ψ | :

∞∑
j=0

|ψj |2j2β ≤ L, and ‖ψ‖ = 1

}
, β > 0,L > 0.

To gain some intuition about the meaning of this class, let us assume that B is the Fock basis
of a one-mode system. Then the constraint translates into a moment condition for the number
operator 〈ψ |N2β |ψ〉 ≤ L; this is a mild assumption considering that all experimentally feasi-
ble states have finite moments to all orders. Even more, the coefficients of typical states such
as coherent, squeezed and Fock states decay exponentially with the photon number. We also
consider the following Hermite-exponential class, which is smoother than the previous one.
The relation of this class to other classes of exponential smoothness is discussed in Section 8
in the context of Wigner function estimation:

(63)
Eβ,r(L) :=

{
|ψ〉〈ψ | :

∞∑
j=0

|ψj |2 exp
(
2βjr)≤ L and ‖ψ‖ = 1

}
,

β > 0,L > 0, r ∈ (0,1].
Our first model describes n identical copies of a pure state belonging to the Sobolev class,

(64) QS
n := {|ψ〉〈ψ |⊗n : |ψ〉〈ψ | ∈ Sβ(L)

}
.

Similarly, define the i.i.d. model when the pure state belongs to the exponential class,

(65) QE
n := {|ψ〉〈ψ |⊗n : |ψ〉〈ψ | ∈ Eβ,r(L)

}
.

We now introduce the corresponding quantum Gaussian models. Let F := F(H) be the
Fock space over H, and let |G(

√
nψ)〉 ∈ F be the coherent state with “displacement” vector√

nψ . We define the coherent states models,

GS
n = {∣∣G(

√
nψ)

〉〈
G(

√
nψ)

∣∣ : ψ ∈ H, such that |ψ〉〈ψ | ∈ Sβ(L)
}
,(66)

GE
n = {∣∣G(

√
nψ)

〉〈
G(

√
nψ)

∣∣ : ψ ∈ H, such that |ψ〉〈ψ | ∈ Eβ,r(L)
}
.(67)

Using the factorization property (12) with respect to the orthonormal basis B , we see that the
Gaussian states in both models defined above can be factored into a product of independent
one-mode coherent Gaussian states of mean

√
nψi ,∣∣G(

√
nψ)

〉∼= ∞⊗
i=0

∣∣G(
√

nψi)
〉
.

Note that the above model was discussed as a variant of the quantum Gaussian white noise
model in (46) and the optimal estimation procedures established in Section 5 can be trans-
ferred to the i.i.d. model using the local asymptotic equivalence described below.

Let |ψ0〉 be a fixed state in an infinite dimensional Hilbert space H. We let H0 := {ψ ∈
H : 〈ψ0|ψ〉 = 0} denote the orthogonal complement of Cψ0. Any vector ψ ∈ H “close” to
ψ0 decomposes uniquely (see step 2 of the proof of Theorem 6.2 in Appendix B for further
details) as

(68) ψ = ψu :=
√

1 − ‖u‖2ψ0 + u, u ∈ H0,
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where the phase has been chosen such that the overlap 〈ψ |ψ0〉 is real and positive. Therefore,
the pure states are uniquely parametrized by vectors u ∈H0.

In [11], |ψ0〉 is arbitrary, but for the lower bound we select |ψ0〉 as the basis element for
index j = 0 in (62), that is, |e0〉. For the upper bound, we will use the decomposition (68)
but with |ψ0〉 = |ψ̂1〉—a preliminary estimator (see step 1 of the proof of Theorem 6.2 in
Appendix B in [26] for further details). In addition to the i.i.d. and Gaussian models, we now
introduce their local counterparts (without the Sobolev or exponential restrictions), which
are parametrized by the local parameter u rather than by ψ . Let γn be a sequence such that
γn = o(1), and define the pure state models:

Qn(ψ0, γn) := {∣∣ψ⊗n
u

〉 ∈ H⊗n : u ∈ H0,‖u‖ ≤ γn

}
,(69)

Gn(ψ0, γn) := {∣∣G(
√

nu)
〉 ∈ F(H0) : u ∈ H0,‖u‖ ≤ γn

}
.(70)

We state the LAE (Local Asymptotic Equivalence) theorem (proved in [11]) below, which
shows that these local models are asymptotically equivalent. An interesting fact is that LAE
holds without imposing global restrictions such as defined by the Sobolev or exponential
classes, rather it suffices that the local balls shrink at rate γn = o(1).

THEOREM 6.1 (LAE). Let Qn(ψ0, γn) and Gn(ψ0, γn) be the models defined in (69)
and (70), respectively, and γn = o(1). Then the following convergence holds:

(71) lim sup
n→∞

sup
|ψ0〉∈H

�
(
Qn(ψ0, γn),Gn(ψ0, γn)

)= 0,

where �(·, ·) is the quantum Le Cam distance defined in equation (18).

We will consider the rates of convergence for specific channels Tn and Sn where

sup
u:‖u‖≤γn

∥∥Tn

(|ψu〉〈ψu|⊗n)− ∣∣G(
√

nu)
〉〈
G(

√
nu)

∣∣∥∥
1 → 0,

sup
u:‖u‖≤γn

∥∥Sn

(∣∣G(
√

nu)
〉〈
G(

√
nu)

∣∣)− |ψu〉〈ψu|⊗n
∥∥

1 → 0.

In particular, we will show that the rates of convergence of the above channels will satisfy
equation (19) with cn = log logn for the Sobolev case and n1/2/ log logn for the exponential
case and then we will use (22) to transfer risks between the two models.

6.1. Upper asymptotic risk bound. For the upper bound, we first split the sample and
use a part of it to form a crude estimate ρ̂1 = |ψ̂1〉〈ψ̂1| of the pure state ρ = |ψ〉〈ψ | such
that the estimate lies within a γn-neighborhood of ρ with high probability. Then we use local
asymptotic equivalence to transfer this problem to the estimation of a Gaussian state. The
final step is to transfer the bounds for the Gaussian state (using the estimator in Section 5) to
the pure state model. We have the following theorem whose proof is given in Appendix B of
[26].

THEOREM 6.2. Consider the i.i.d. pure state model, that is, states are ρ⊗n where ρ =
|ψ〉〈ψ |.

Case A
Let Sβ(L) be the Hermite–Sobolev class defined in (62) and let

(72) η̃n = 1

2
n2β/(2β+1)L−1/(2β+1)c−1(β).
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Then there exists an estimator |ψ̂(S)
n 〉〈ψ̂(S)

n | of |ψ〉〈ψ | such that for all β > 1/2 and L > 0
the following holds:

(73) lim sup
n→∞

sup
|ψ〉〈ψ |∈Sβ(L)

Eψ

[
wn

(
η̃n

2

∥∥∣∣ψ̂(S)
n

〉〈
ψ̂(S)

n

∣∣− |ψ〉〈ψ |∥∥2
1

)]
≤ 1.

Case B
LetEβ,r(L) be the Hermite-exponential class defined in (63); then there exists an estimator

|ψ̂(E)
n 〉〈ψ̂(E)

n | of |ψ〉〈ψ | such that for all β > 0, L > 1 and r ∈ (0,1] the following holds:

(74) lim sup
n→∞

sup
|ψ〉〈ψ |∈Eβ,r (L)

Eψ

[
vn

(
τn(β, r)

2

∥∥∣∣ψ̂(E)
n

〉〈
ψ̂(E)

n

∣∣− |ψ〉〈ψ |∥∥2
1

)]
≤ 1.

Again in the upper bound, we have used the first of the following equivalent notation:

Eψ

[
wn

(
η̃n

2

∥∥∣∣ψ̂(S)
n

〉〈
ψ̂(S)

n

∣∣− |ψ〉〈ψ |∥∥2
1

)]

=
∫

wn

(
η̃n(β,L)

2

∥∥ρ − |ψ〉〈ψ |∥∥2
1

)
Tr
(|ψ〉〈ψ |⊗nM ′(dρ)

)
.

M ′ being constructed from the POVM M (used for the Gaussian model) by applying
the dual channel. Similarly, we use the condensed expectation notation in the Hermite-
exponential class.

6.2. Lower asymptotic risk bound. For the lower bound, we restrict ψ to be of form (68)
for |u〉 ∈ H0, |ψ0〉 = |e0〉 and ‖u‖ ≤ γn = o(1). Then ψ̂ = ψû can be restricted similarly,
without increasing the risk. By Lemma B.3 in [26],

(75)
∥∥|ψû〉〈ψû| − |ψu〉〈ψu|

∥∥2
1 = 4‖û − u‖2 + O

(
γ 4
n

)
.

Thus it suffices to obtain a lower bound for the estimation of the local parameter u. We
already have a lower bound of the minimax risk (for the estimation of u) in the Gaussian
model and we use the reverse channel Sn (defined in the proof of Theorem 4.1 in [12]) to
give a lower bound to the minimax risk in the i.i.d. model. The lower bound is given in the
following theorem whose proof is given in Appendix B in [26].

THEOREM 6.3. Consider the i.i.d. pure state model, that is, states are ρ⊗n where ρ =
|ψ〉〈ψ |.

Case A
Let Sβ(L) be the Hermite–Sobolev class defined in (62) and let η̃n as defined in equation

(72). Then for all β > 0 and L > 0 the following holds:

(76) lim inf
n→∞ inf

M
sup

|ψ〉〈ψ |∈Sβ(L)

∫
wn

(
η̃n(β,L)

2

∥∥ρ − |ψ〉〈ψ |∥∥2
1

)
Tr
(|ψ〉〈ψ |⊗nM(dρ)

)≥ 1.

Case B
Let Eβ,r(L) be the Hermite-exponential class defined in (63). Then for all β > 0, L > 1

and r ∈ (0,1] the following holds:

(77) lim inf
n→∞ inf

M
sup

|ψ〉〈ψ |∈Eβ,r (L)

∫
vn

(
τn(β, r)

2

∥∥ρ − |ψ〉〈ψ |∥∥2
1

)
Tr
(|ψ〉〈ψ |⊗nM(dρ)

)≥ 1.
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7. Adaptive estimators. We note that neither of the estimators obtained in Theorem 5.1
and Theorem 6.2 are adaptive since the weights lj = (1 − κ(αj )

1/2)+ = (1 − κjβ)+ are
dependent on β and R (or L in the i.i.d. model). Similarly, for the exponential ellipsoid the
weights depend on β , r , R (or L). We can modify our estimators so that they are adaptive with
respect to β and R (or L) for the Sobolev case, and β , r and R (or L) for the exponential case.
We use weakly geometric block Stein estimators (see [40]), which are known to be adaptive
to the Gaussian sequence models. We will define a natural number Nmax separately for the
Sobolev and exponential cases.

Partition the set {1,2, . . . ,Nmax} in J blocks, that is,

J⋃
j=1

Bj = {1,2, . . . ,Nmax}

such that Bi ∩Bj = ∅ for i �= j and min{k : k ∈ Bj } > max{k : k ∈ Bj−1}. Let Tj = |Bj | and
define blockwise weights:

(78) λ̆i =
⎧⎪⎨⎪⎩
(

1 − (n/2)−1Tj∑
k∈Bj

‖Yk‖2

)
+

if i ∈ Bj ,

0 if i > Nmax.

The block Stein estimator (in this context recall that each component is an element of R2)
is given by μ̆i = λ̆iYi . We will use a particular structure of blocks called weakly geometric
blocks.

Case A
Define ε = 1√

n
, ρε = (log(1/ε))−1 and Nmax = n and consider the following block struc-

ture:

(79)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

T̃
(S)
1 = ⌈

ρ−1
ε

⌉
,

T̃
(S)
j = ⌊

T̃
(S)

1 (1 + ρε)
j−1⌋ for j ∈ {2, . . . J − 1},

T̃
(S)
J = Nmax −

J−1∑
j=1

T̃
(S)
j ,

where

J = min

{
m : T̃ (S)

1 +
m∑

j=2

⌊
T̃

(S)
1 (1 + ρε)

j−1⌋≥ Nmax

}
.

Consider λ̆i given in (78) with Tj replaced by T̃
(S)
j (in this special case write λ̆i as λ̆

(S)
i ) and

define μ̆
(S)
j = λ̆

(S)
j Yj , m̆

(S)
n = (μ̆

(S)
1 , μ̆

(S)
2 , . . .). In the Sobolev case, m̆

(S)
n will be our adaptive

estimator for m.
Case B
In the exponential case, we take Nmax = (logn)1/r0� and ε′ = (logn)−1/2r0 . Define ρε′

(as in the Sobolev case) and the blocks T̃
(E)
j (using ρε′ instead of ρε).

Consider λ̆i given in (78) with Tj replaced by T̃
(E)
j (in this special case write λ̆i as λ̆

(E)
i )

and define μ̆
(E)
j = λ̆

(E)
j Yj , m̆

(E)
n = (μ̆

(E)
1 , μ̆

(E)
2 , . . .). In the exponential case, m̆

(E)
n will be our

adaptive estimator for m.
We have the following theorems which are adaptive versions of Theorem 5.1 and Theo-

rem 6.2 (the proofs are deferred to Appendix B in [26]).
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THEOREM 7.1. (i) Case A
Consider the estimator m̆

(S)
n . Then for any R > 0, β > 0, the following holds:

(80) lim sup
n→∞

sup
m∈�(β,R)

Emwn

(
ηn

∥∥m − m̆(S)
n

∥∥2)≤ 1.

Case B
Consider the estimator m̆

(E)
n . Then for any R > 0, β > 0 and 0 < r0 < r ≤ 1, the following

holds:

(81) lim sup
n→∞

sup
m∈E(β,r,R)

Emvn

(
τn

∥∥m − m̆(E)
n

∥∥2)≤ 1.

(ii) Equation (80) holds with �(β,R) replaced by �1(β,R) with λ̆
(S)
0 = 1 and λ̆

(S)
j as in (79)

for j ≥ 1. Equation (81) holds with E(β, r,R) replaced by E1(β, r,R) with λ̆
(E)
0 = 1 and λ̆

(E)
j

as in (78) (specialized to the exponential case) for j ≥ 1.

THEOREM 7.2. Case A
Let Sβ(L) be the Hermite–Sobolev class defined in (31) and let β0 > 1/2. Then there exists

an estimator |ψ̆(S)
n 〉〈ψ̆(S)

n | (not depending on β and L) for which the following upper bound
holds:

(82) lim sup
n→∞

sup
|ψ〉〈ψ |∈Sβ(L)

Eψ

[
wn

(
η̃n

2

∥∥∣∣ψ̆(S)
n

〉〈
ψ̆(S)

n

∣∣− |ψ〉〈ψ |∥∥2
1

)]
≤ 1

whenever β > β0 and L > 0.
Case B
Let Eβ,r(L) be the Hermite-exponential class defined in (32) and let β0 > 0 and

0 < r0 < 1. Then there exists an estimator |ψ̆E
n 〉〈ψ̆(E)

n | (not depending on β , r and L) for
which the following upper bound holds:

(83) lim sup
n→∞

sup
|ψ〉〈ψ |∈Eβ,r (L)

Eψ

[
vn

(
τn

2

∥∥∣∣ψ̆(E)
n

〉〈
ψ̆(E)

n

∣∣− |ψ〉〈ψ |∥∥2
1

)]
≤ 1

whenever β > β0, L > 1 and r0 < r ≤ 1.

8. Wigner function estimation. For estimation of pure states, we assumed that the co-
efficients belong to the Sobolev ellipsoid, that is, if |ψ〉〈ψ | is the pure state and |ψ〉 =∑∞

i=0 ψi |ei〉 is the expansion with respect to the Hermite basis, then∑
j

|ψj |2j2β ≤ L.

Henceforth for this section, we will assume that the indices for the summation run from 0 to
∞ unless mentioned otherwise. Recall (5) by which we have ‖ρ1 −ρ2‖2

1 = 4(1−|〈ψ1|ψ2〉|2).
Similarly, it can be verified that ‖ρ1 −ρ2‖2

2 = 2(1 −|〈ψ1|ψ2〉|2) where ‖A‖2
2 = Tr(A∗A). On

the other hand, by the overlap formula (6) we have

‖ρ1 − ρ2‖2
2 = 2π‖Wρ1 − Wρ2‖2.

Thus we have the following identity for pure states ρ1 and ρ2:

(84) ‖Wρ1 − Wρ2‖2 = 1

4π
‖ρ1 − ρ2‖2

1.

Since Theorem 3.3 of the paper provides a scheme for sharp and adaptive minimax estima-
tion of a pure state ρ = |ψ〉〈ψ | in the trace norm, we can use equation (84) to develop a
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sharp and adaptive minimax estimator for the Wigner function of pure states. To translate the
smoothness condition on the pure states to a property of the Wigner function of a pure state,
first note that

ρ = |ψ〉〈ψ | =∑
j,k

ψj ψ̄k|ej 〉〈ek|.

By linearity of the quantum and ordinary Fourier transforms, we have

(85) Wρ =∑
j,k

ψj ψ̄kWjk,

where

Wij (q,p) = 1

(2π)2

∫ ∫
exp(−iuq − ivp)Tr

(
exp(iuQ + ivP )|ei〉〈ej |)dudv

= 1

(2π)2

∫ ∫
exp(−iuq − ivp)〈ej | exp(iuQ + ivP )|ei〉dudv.

It can be easily verified that W̄ij (q,p) = Wji(q,p). Since |ei〉 is an orthonormal basis, an
application of the overlap formula (it also holds for trace-class operators as shown in [28])
gives

2π

∫ ∫
W̄ij (q,p)Wkl(q,p)dq dp = 〈el |ej 〉〈ei |ek〉 = δjlδik,

where δij = 1 if i = j and 0 otherwise. Thus {√2πWij } is an orthonormal set of functions.
Let HW be the Hilbert space spanned by these functions. From (85), it can be seen that if Wρ

is the Wigner function of a pure state then Wρ ∈ HW . By linearity, it can also be established
that Wρ ∈HW for any mixed state ρ. For a general state, we write the expansion as

(86) Wρ =∑
j,k

ρjkWjk.

Define the following classes of Wigner functions:

S
β
W(L) =

{
Wρ :∑

j,k

|ρjk|2j2βk2β ≤ L, where Wρ =∑
j,k

ρjkWjk

}
,(87)

E
β,r
W (L) =

{
Wρ :∑

j,k

|ρjk|2e2β(jr+kr ) ≤ L, where Wρ =∑
j,k

ρjkWjk

}
.(88)

Observe that ∑
j,k

|ψjψ̄k|2j2βk2β =
(∑

j

|ψj |2j2β

)2

and hence for a pure state |ψ〉〈ψ | we have

|ψ〉〈ψ | ∈ Sβ(L) iff W|ψ〉〈ψ | ∈ S
β
W

(
L2).

Similarly,

|ψ〉〈ψ | ∈ Eβ,r(L) iff W|ψ〉〈ψ | ∈ E
β,r
W

(
L2).

In order to facilitate comparison with other results in the literature, the theorem to follow is
stated in condensed notation.
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THEOREM 8.1. Hermite–Sobolev Wigner class
Let ρ be a pure state and Wρ ∈ S

β
W(L2). Then the following result holds:

(89) lim
n→∞ inf

W|ψ̂〉〈ψ̂ |
sup

W|ψ〉〈ψ |∈S
β
W (L2)

Eψ

[
wn

(
2πη̃n‖W|ψ〉〈ψ | − W|ψ̂〉〈ψ̂ |‖2)]= 1.

For every β0 > 1/2, there exists an estimator, not depending on β and L, attaining this bound
asymptotically, whenever β > β0 and L > 0.

Hermite-exponential Wigner class
Let ρ be a pure state and Wρ ∈ E

β,r
W (L2). Then the following result holds:

(90) lim
n→∞ inf

W|ψ̂〉〈ψ̂ |
sup

W|ψ〉〈ψ |∈E
β,r
W (L2)

Eψ

[
vn

(
2πτn‖W|ψ〉〈ψ | − W|ψ̂〉〈ψ̂ |‖2)]= 1.

For every 0 < r0 < 1 and β0 > 0, there exists an estimator, not depending on β , R and r ,
attaining this bound asymptotically, whenever β > β0, L > 1 and r0 < r ≤ 1.

In POVM notation, the statements of the theorems are as follows:

lim
n→∞ inf

M
sup

|ψ〉〈ψ |∈Sβ(L)

∫
wn

(
2πη̃n‖W|ψ〉〈ψ | − Wρ‖2)Tr

(|ψ〉〈ψ |⊗nM(dρ)
)= 1.(91)

lim
n→∞ inf

M
sup

|ψ〉〈ψ |∈Eβ,r (L)

∫
vn

(
2πτn‖W|ψ〉〈ψ | − Wρ‖2)Tr

(|ψ〉〈ψ |⊗nM(dρ)
)= 1.(92)

Here, the range and domain of the POVMs are same as in Theorem 3.3.

Comparison with other classes

In the literature, various authors consider estimation of Wigner functions over different
smoothness classes. Only classes of infinitely differentiable functions are considered; we
compare these to the exponential classes E

β,r
W (L) defined in (88). In [3], the authors consider

the following class:

R(B, r) = {
ρ : |ρjk| ≤ exp

(−B(j + k)r/2)}
and a related class has been considered in [1]:

R(C,B, r) = {
ρ : |ρjk| ≤ C exp

(−B(j + k)r/2)},
where 0 < r ≤ 2. Replacing r with 2r , we have 0 < r ≤ 1 and since 2(j + k)r > jr + kr we
have ∑

j,k

|ρjk|2e2β(jr+kr ) ≤ C
∑
j,k

e−2B(j+k)r e2β(jr+kr ) ≤ C
∑
j,k

e−(B−2β)(j r+kr ).

For B > 2β , the above sum is finite and in that case

RW(C,B, r) ⊂ E
β,r
W (L)

for some L > 0 and 0 < r ≤ 1, where

RW(C,B, r) = {
Wρ : |ρjk| ≤ C exp

(−B(j + k)r
)}

.

Yet another class has been considered in [10] and [30]:

A(β, r,L) =
{
Wρ :

∫ ∣∣W̃ρ(w)
∣∣2e2β‖w‖r

dw ≤ (2π)2L2
}
,
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where W̃ is the Fourier transform of the Wigner function. In [10], it is mentioned (first para-
graph page 13) that if Tr[ρeaNr/2] < ∞, then Wρ ∈ A(β, r,L) for some β > 0, L > 0. Here,
N = 1

2(Q2 + P 2 − 1) is the number operator. Before verifying this claim, we note that by
replacing r with 2r for pure states, we have

Tr
[
ρeaNr ]= 〈ψ |eaNr |ψ〉 =∑

j

|ψj |2eajr

.

The last equality follows by expanding |ψ〉 in the Hermite basis {|ej 〉} and noting that the
|ej 〉 form an eigenbasis of the number operator N . But the condition that the RHS of the last
equation is appropriately bounded is exactly the description of the class Eβ,r(L) for a = 2β .
For a general state (mixed or pure) ρ, the condition Tr[ρeaNr ] ≤ L implies Wρ ∈ E

β,r
W (L2)

for a = 2β . We defer the proof of this statement to Appendix A in [26]. We also have the
following lemma (also proved in Appendix A).

LEMMA 8.2.

E
β,r
W (L) ⊂ Ã(β1, r,L1),

where

Ã(β1, r,L1) =
{
Wρ :

∫ ∣∣W̃ρ(w)
∣∣2e2β1‖w‖2r

dw ≤ (2π)2L2
1

}
for some β1 > 0, L1 > 0. Note that in our case 0 < r ≤ 1.

We compare our result to those in [1, 3] and [30] (excluding [10] since it only considers
pointwise estimation). We only consider the noiseless case (η = 1 or γ = 0) since our mea-
surements did not include additional Gaussian noise like assumed in these papers. Theorem 1

in [3] describes the L2 risk for η = 1 and the rate obtained is ϕ2
n = n−1(logn)

17
3r or replacing

r by 2r (to compare with our results) ϕ2
n = n−1(logn)

17
6r . We note that apart from sharp min-

imaxity our rate is also faster, that is, n−1(logn))
1
r which should be expected since we are

only maximizing over the smaller class of pure states. Theorem 4.1 of [3] also yields similar
slow rates with a kernel density estimator. The statements of [1] are probabilistic in nature.
Theorem 2.1 there (which directly computes the L2 risk of estimating the states instead of
estimating the Wigner function) states that with probability at least 1 − ε,∥∥ρ − ρ̃n

∥∥2
2 ≤ C1n

−1(logn)
20
3r (log logn)ε−1).

Again if we replace r with 2r we obtain a slower rate compared to ours. Furthermore, we
observe that while [1] and [3] only gives upper bounds for L2 risk over the class R(B, r) or
R(C,B, r), [30] gives a lower bound for the L2 risk. Setting γ = 0 in Theorem 2 of [30] one
obtains that the lower bound is of the order n−1. Our result shows that, when restricted to a
similar class (i.e., E

β,r
W (L)) and pure states, the logarithmic correction is unavoidable, which

is of course also suggested by basic results about exponential ellipsoids [7, 38].
Finally, we stress again that our lower bound is over all quantum measurements, whereas

the lower bound mentioned in [30] assumes that the measurement is quantum homodyne
tomography. Risk bounds for quantum state estimation based on other specific measurement
schemes (e.g., Pauli measurements) are obtained in [13, 24, 25].

Funding. Supported in part by NSF Grants DMS-1407600 and DMS-1915884.
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SUPPLEMENTARY MATERIAL

Supplement to “Minimax nonparametric estimation of pure quantum states” (DOI:
10.1214/21-AOS2115SUPP; .pdf). Some details on the covariant measurement and the ran-
dom variable generated by it are discussed in Appendix A.1. A comparison with the classical
Gaussian sequence model can be found in Appendix A.2., while Appendix A.3 contains a dis-
cussion of Wigner function classes. Proofs of the main theorems are presented in Appendix
B while those of some technical lemmas are given in Appendix C.
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